Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.906
Filtrar
1.
Biosens Bioelectron ; 254: 116208, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492361

RESUMO

Aquatic fishes are threatened by the strong pathogenic bacterium Nocardia seriolae, which challenges the current prevention and treatment approaches. This study introduces luminogens with aggregation-induced emission (AIE) as an innovative and non-antibiotic therapy for N. seriolae. Specifically, the AIE photosensitizer, TTCPy-3 is employed against N. seriolae. We evaluated the antibacterial activity of TTCPy-3 and investigated the killing mechanism against N. seriolae, emphasizing its ability to aggregate within the bacterium and produce reactive oxygen species (ROS). TTCPy-3 could effectively aggregate in N. seriolae, generate ROS, and perform real-time imaging of the bacteria. A bactericidal efficiency of 100% was observed while concentrations exceeding 4 µM in the presence of white light irradiation for 10 min. In vivo, evaluation on zebrafish (Danio rerio) confirmed the superior therapeutic efficacy induced by TTCPy-3 to fight against N. seriolae infections. TTCPy-3 offers a promising strategy for treating nocardiosis of fish, paving the way for alternative treatments beyond traditional antibiotics and potentially addressing antibiotic resistance.


Assuntos
Técnicas Biossensoriais , Doenças dos Peixes , Nocardiose , Nocardia , Animais , Peixe-Zebra , Espécies Reativas de Oxigênio , Nocardiose/tratamento farmacológico , Nocardiose/veterinária , Nocardiose/microbiologia , Peixes/microbiologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230066, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497267

RESUMO

Gut bacteria are prevalent throughout the Metazoa and form complex microbial communities associated with food breakdown, nutrient provision and disease prevention. How hosts acquire and maintain a consistent bacterial flora remains mysterious even in the best-studied animals, including humans, mice, fishes, squid, bugs, worms and flies. This essay visits the evidence that hosts have co-evolved relationships with specific bacteria and that some of these relationships are supported by specialized physical niches that select, sequester and maintain microbial symbionts. Genetics approaches could uncover the mechanisms for recruiting and maintaining the stable and consistent members of the microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Bactérias , Peixes/microbiologia
3.
Environ Microbiol Rep ; 16(1): e13226, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38298071

RESUMO

Flavobacterium plurextorum is a potential fish pathogen of interest, previously isolated from diseased rainbow trout (Oncorhynchus mykiss) and oomycete-infected chum salmon (Oncorhynchus keta) eggs. We report here the first complete genome sequence of F. plurextorum RSG-18 isolated from the gut of Schlegel's black rockfish (Sebastes schlegelii). The genome of RSG-18 consists of a circular chromosome of 5,610,911 bp with a 33.57% GC content, containing 4858 protein-coding genes, 18 rRNAs, 63 tRNAs and 1 tmRNA. A comparative analysis was conducted on 11 Flavobacterium species previously reported as pathogens or isolated from diseased fish to confirm the potential pathogenicity of RSG-18. In the SEED classification, RSG-18 was found to have 36 genes categorized in 'Virulence, Disease and Defense'. Across all Flavobacterium species, a total of 16 antibiotic resistance genes and 61 putative virulence factors were identified. All species had at least one phage region and type I, III and IX secretion systems. In pan-genomic analysis, core genes consist of genes linked to phages, integrases and matrix-tolerated elements associated with pathology. The complete genome sequence of F. plurextorum RSG-18 will serve as a foundation for future research, enhancing our understanding of Flavobacterium pathogenicity in fish and contributing to the development of effective prevention strategies.


Assuntos
Bacteriófagos , Doenças dos Peixes , Oncorhynchus mykiss , Perciformes , Animais , Flavobacterium/genética , Virulência/genética , Fatores de Virulência/genética , Peixes/microbiologia , Doenças dos Peixes/microbiologia , Oncorhynchus mykiss/microbiologia
4.
Rev. biol. trop ; 71(1): e55913, dic. 2023. graf
Artigo em Inglês | LILACS, BNUY-Enf | ID: biblio-1550732

RESUMO

Abstract Introduction: Chemical pollution represents a great concern to aquatic organisms, especially fish. Metals enter the aquatic environment from a variety of sources, including natural biogeochemical cycles and anthropogenic sources such as industrial and residential effluents, mining and atmospheric sources. Objective: To describe the Eustrongylides sp. larvae and the interaction with their fish hosts as indicators of mercury (Hg) contamination in the Brazilian Amazon, and the distribution of Hg in the internal organs of fish species Hoplias malabaricus and Pygocentrus nattereri collected in oxbow lakes on the Tapajós River, in the municipality of Santarém, in the state of Pará. Methods: Total Hg was analyzed using the Direct Hg Analyzer - DMA-80. Concentrations of Hg in Eustrongylides sp. were compared with those found in the tissues/organs of the hosts H. malabaricus and P. nattereri. Hg concentrations in the host/parasite system were statistically compared using Principal Component Analysis. The bioconcentration factor (BCF) was calculated to assess the bioaccumulation capacity of metals in Eustrongylides sp. larvae, comparing the concentration of Hg in the parasite with that accumulated in the musculature of infected hosts. Results: Hg concentrations in all tissues/organs analyzed were higher in the parasitic species Eustrongylides sp. larvae when compared with those found in tissues/organs of H. malabaricus and P. nattereri. There was an inversely proportional relationship, showing that when Eustrongylides sp. larvae are present, the concentration in the parasite is higher than in the musculature of host fish H. malabaricus and P. nattereri. The BCF of Hg was found by comparing Eustrongylides sp. larvae/H. malabaricus muscle and was observed during a flood (BCF Hg = 15 364). Conclusions: The results confirm the greater bioaccumulative capacity of Eustrongylides sp. compared to its host. The data indicated the viability of using Eustrongylides sp. larvae in biomonitoring programs. It is worth mentioning that fish samples for Hg analysis must be free of parasites since their presence can alter the results.


Resumen Introducción: La contaminación química del hábitat acuático representa un gran peligro para organismos acuáticos, especialmente para peces. Los metales ingresan al ambiente acuático desde una variedad de fuentes, incluidos los ciclos biogeoquímicos naturales y fuentes antropogénicas, como efluentes industriales y residenciales, minería y fuentes atmosféricas. Objetivo: Describir las especies de Eustrongylides sp. y la interacción con sus peces hospederos como indicadores de contaminación por mercurio en la Amazonía brasileña, y la distribución en los órganos internos de las especies de peces Hoplias malabaricus y Pygocentrus nattereri recolectadas en cochas del Río Tapajós, en el municipio de Santarém, del estado de Pará. Métodos: El Hg total se analizó utilizando el Direct Hg Analyzer - DMA-80. Las concentraciones de Eustrongylides sp. se compararon con las encontrados en los tejidos/órganos de los hospederos H. malabaricus y P. nattereri. Las concentraciones en el sistema hospedero/parásito se compararon estadísticamente utilizando el análisis de componentes principales. Se calculó el factor de bioconcentración (BCF) para evaluar la capacidad de bioacumulación de metales en larvas de Eustrongylides sp., comparando la concentración en el parásito con la acumulada en la musculatura de los hospederos infectados. Resultados: Las concentraciones de Hg en todos los tejidos/órganos analizados fueron mayores en las larvas de la especie parasitaria Eustrongylides sp. en comparación con las encontradas en los tejidos/órganos de H. malabaricus y P. nattereri. Hubo una relación inversamente proporcional, mostrando que cuando las larvas de Eustrongylides sp. están presentes, la concentración en el parásito es mayor que en la musculatura de los peces hospederos H. malabaricus y P. nattereri. El BCF de Hg se encontró comparando Eustrongylides sp. larvas/ músculo H. malabaricus y se observó durante una inundación (BCF Hg = 15 364). Conclusiones: Los resultados confirman la mayor capacidad bioacumulativa de Eustrongylides sp. en comparación con su hospedero. Los datos indicaron la viabilidad de utilizar larvas de Eustrongylides sp. en programas de biomonitoreo. Cabe mencionar que las muestras de pescado para análisis de Hg deben estar libres de parásitos ya que su presencia puede alterar los resultados.


Assuntos
Animais , Mercúrio/análise , Nematoides/microbiologia , Brasil , Poluição de Rios , Ecossistema Amazônico , Peixes/microbiologia
5.
PLoS One ; 18(11): e0288040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37956125

RESUMO

As a strategy for minimizing microbial infections in fish hatcheries, we have investigated how putatively probiotic bacterial populations influence biofilm formation. All surfaces that are exposed to the aquatic milieu develop a microbial community through the selective assembly of microbial populations into a surface-adhering biofilm. In the investigations reported herein, we describe laboratory experiments designed to determine how initial colonization of a surface by nonpathogenic isolates from sturgeon eggs influence the subsequent assembly of populations from a pelagic river community, into the existing biofilm. All eight of the tested strains altered the assembly of river biofilm in a strain-specific manner. Previously formed isolate biofilm was challenged with natural river populations and after 24 hours, two strains and two-isolate combinations proved highly resistant to invasion, comprising at least 80% of the biofilm community, four isolates were intermediate in resistance, accounting for at least 45% of the biofilm community and two isolates were reduced to 4% of the biofilm community. Founding biofilms of Serratia sp, and combinations of Brevundimonas sp.-Hydrogenophaga sp. and Brevundimonas sp.-Acidovorax sp. specifically blocked populations of Aeromonas and Flavobacterium, potential fish pathogens, from colonizing the biofilm. In addition, all isolate biofilms were effective at blocking invading populations of Arcobacter. Several strains, notably Deinococcus sp., recruited specific low-abundance river populations into the top 25 most abundant populations within biofilm. The experiments suggest that relatively simple measures can be used to control the assembly of biofilm on the eggs surface and perhaps offer protection from pathogens. In addition, the methodology provides a relatively rapid way to detect potentially strong ecological interactions between bacterial populations in the formation of biofilms.


Assuntos
Biofilmes , Rios , Animais , Flavobacterium , Bactérias Aeróbias , Peixes/microbiologia
6.
ISME J ; 17(12): 2362-2369, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37891426

RESUMO

The bioluminescent symbiosis involving the urchin cardinalfish, Siphamia tubifer, and Photobacterium mandapamensis, a luminous member of the Vibrionaceae, is highly specific compared to other bioluminescent fish-bacteria associations. Despite this high degree of specificity, patterns of genetic diversity have been observed for the symbionts from hosts sampled over relatively small spatial scales. We characterized and compared sub-species, strain-level symbiont diversity within and between S. tubifer hosts sampled from the Philippines and Japan using PCR fingerprinting. We then carried out whole genome sequencing of the unique symbiont genotypes identified to characterize the genetic diversity of the symbiont community and the symbiont pangenome. We determined that an individual light organ contains six symbiont genotypes on average, but varied between 1-13. Additionally, we found that there were few genotypes shared between hosts from the same location. A phylogenetic analysis of the unique symbiont strains indicated location-specific clades, suggesting some genetic differentiation in the symbionts between host populations. We also identified symbiont genes that were variable between strains, including luxF, a member of the lux operon, which is responsible for light production. We quantified the light emission and growth rate of two strains missing luxF along with the other strains isolated from the same light organs and determined that strains lacking luxF were dimmer but grew faster than most of the other strains, suggesting a potential metabolic trade-off. This study highlights the importance of strain-level diversity in microbial associations and provides new insight into the underlying genetic architecture of intraspecific symbiont communities within a host.


Assuntos
Peixes , Perciformes , Animais , Filogenia , Peixes/microbiologia , Perciformes/microbiologia , Óperon , Bactérias , Simbiose
7.
J Food Sci ; 88(11): 4653-4663, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37799068

RESUMO

Contaminated fungi on dried salted fish of three species including Talang queenfish (TQF, Scomberroides commersonianus), Hamilton's thryssa fish (HTF, Thryssa hamiltonii), and Cobia fish (CF, Rachycentron canadum) were isolated and identified. One hundred and sixty-nine isolates were obtained from TQF and HTF, respectively, while no fungi were detected in CF. The dominant genera were Aspergillus spp. (n = 79), Penicillium spp. (n = 60), and non-sporulating fungi (n = 30). The representative groups of Aspergillus spp. (n = 6) and Penicillium spp. (n = 3) based on different morphological characteristics were selected for species identification by molecular methods involving ITS1-5.8s-ITS2 region and Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometer (MALDI-TOF MS) analysis. The nine isolates were identified to be Aspergillus versicolor (n = 2), Aspergillus montevidensis (n = 3), Penicillium citrinum (n = 3), and Aspergillus sp. (n = 1). The antifungal activity of chitooligosaccharide-gallic acid (COS-GAL) conjugate against A. versicolor F1/10M9, A. montevidensis F1/30M20, and P. citrinum F1/23M14 was examined. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were in the range of 0.625-2.5 mg/mL and 1.25-10 mg/mL, respectively. COS-GAL conjugate at the concentration of 5 mg/mL completely inhibited the spore germination of A. versicolor F1/10M9 and P. citrinum F1/23M14 after 72 h of treatment. COS-GAL conjugate at 4 × MIC mainly affected the mycelium of A. versicolor F1/10M9 and P. citrinum F1/23M14 after treatment with COS-GAL conjugate for 3 days by coating mycelium surface and reducing the size of mycelium. Therefore, COS-GAL conjugate could be used as a food additive to inhibit or prevent the growth of fungi contaminated in dried salted fish or other relevant products. PRACTICAL APPLICATION: During processing, dried salted fish can be contaminated with fungi, which may cause food poisoning and food spoilage. The contaminated fungi are capable of producing mycotoxin that is harmful to consumers. Synthetic food preservatives have long been used to inhibit fungal growth, but the side effects to consumers are of concern. Chitooligosaccharide is a nontoxic chitosan derivative produced from shrimp shell and its conjugate namely chitooligosaccharide-gallic acid conjugate showed high efficacy in inhibiting the growth of fungi including Aspergillus spp. and Penicillium spp. Therefore, it can serve as a natural alternative preservative for the prevention of fungal growth in dried salted fish.


Assuntos
Quitosana , Penicillium , Animais , Fungos , Antifúngicos/farmacologia , Quitosana/farmacologia , Peixes/microbiologia
8.
BMC Microbiol ; 23(1): 275, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773099

RESUMO

BACKGROUND: Gut microbiota play a key role in the nutrition of many marine herbivorous fishes through hindgut fermentation of seaweed. Gut microbiota composition in the herbivorous fish Kyphosus sydneyanus (family Kyphosidae) varies between individuals and gut sections, raising two questions: (i) is community composition stable over time, especially given seasonal shifts in storage metabolites of dietary brown algae, and (ii) what processes influence community assembly in the hindgut? RESULTS: We examined variation in community composition in gut lumen and mucosa samples from three hindgut sections of K. sydneyanus collected at various time points in 2020 and 2021 from reefs near Great Barrier Island, New Zealand. 16S rRNA gene analysis was used to characterize microbial community composition, diversity and estimated density. Differences in community composition between gut sections remained relatively stable over time, with little evidence of temporal variation. Clostridia dominated the proximal hindgut sections and Bacteroidia the most distal section. Differences were detected in microbial composition between lumen and mucosa, especially at genus level. CONCLUSIONS: High variation in community composition and estimated bacterial density among individual fish combined with low variation in community composition temporally suggests that initial community assembly involved environmental selection and random sampling/neutral effects. Community stability following colonisation could also be influenced by historical contingency, where early colonizing members of the community may have a selective advantage. The impact of temporal changes in the algae may be limited by the dynamics of substrate depletion along the gut following feeding, i.e. the depletion of storage metabolites in the proximal hindgut. Estimated bacterial density, showed that Bacteroidota has the highest density (copies/mL) in distal-most lumen section V, where SCFA concentrations are highest. Bacteroidota genera Alistipes and Rikenella may play important roles in the breakdown of seaweed into useful compounds for the fish host.


Assuntos
Microbioma Gastrointestinal , Perciformes , Animais , RNA Ribossômico 16S/genética , Peixes/microbiologia , Sistema Digestório , Bactérias/genética , Bacteroidetes/genética
9.
J Microorg Control ; 28(2): 49-56, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394527

RESUMO

The transmission of potentially life-threatening plasmid-mediated antibiotic-resistant bacteria poses a major threat to public health. This study aimed to determine the presence of commonly observed plasmids encoding plasmid-mediated antibiotic-resistance genes in Salmonella and Escherichia coli isolates from fishery products. Eighty river fishes were purchased from retail stores and supermarkets in Vietnam. Only Salmonella-positive fishes were used for antibiotic-resistant E. coli isolation. Salmonella serotyping was performed using Salmonella antisera. Isolated bacterial DNA was extracted, and antibiotic susceptibility, resistance genes, and replicon typing were determined. Our results showed that Salmonella was isolated from 12.5% (10/80) of the river fishes. Cefotaxime-resistant Salmonella was isolated from 3.8% (3/80) of the fishes and colistin-resistant Salmonella from 1.3% (1/80) . Salmonella serotyping revealed Potsdam, Schwarzengrund, Bardo/Newport, Give, Infantis, Kentucky, and Typhimurium. Multiplex polymerase chain reaction revealed the presence of extended-spectrum ß-lactamase-related genes blaCTX-M-55 and blaCTX-M-65 and the colistin resistance gene mcr-1. To date, no study has reported an antibiotic-resistance plasmid present in multiple bacteria collected from the same food. Thus, horizontal transmission of antibiotic-resistance plasmids may occur at the food level.


Assuntos
Proteínas de Escherichia coli , Peixes , Salmonella enterica , Animais , Antibacterianos/farmacologia , beta-Lactamases/genética , Colistina , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Plasmídeos/genética , Salmonella/genética , Salmonella enterica/genética , Peixes/microbiologia
10.
Mol Ecol ; 32(15): 4447-4460, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37303030

RESUMO

Increasing antimicrobial resistance (AMR) poses a challenge for treatment of bacterial diseases. In real life, bacterial infections are typically embedded within complex multispecies communities and influenced by the environment, which can shape costs and benefits of AMR. However, knowledge of such interactions and their implications for AMR in vivo is limited. To address this knowledge gap, we investigated fitness-related traits of a pathogenic bacterium (Flavobacterium columnare) in its fish host, capturing the effects of bacterial antibiotic resistance, coinfections between bacterial strains and metazoan parasites (fluke Diplostomum pseudospathaceum) and antibiotic exposure. We quantified real-time replication and virulence of sensitive and resistant bacteria and demonstrate that both bacteria can benefit from coinfection in terms of persistence and replication, depending on the coinfecting partner and antibiotic presence. We also show that antibiotics can benefit resistant bacteria by increasing bacterial replication under coinfection with flukes. These results emphasize the importance of diverse, inter-kingdom coinfection interactions and antibiotic exposure in shaping costs and benefits of AMR, supporting their role as significant contributors to spread and long-term persistence of resistance.


Assuntos
Antibacterianos , Infecções Bacterianas , Coinfecção , Resistência Microbiana a Medicamentos , Peixes , Coinfecção/microbiologia , Peixes/microbiologia , Peixes/parasitologia , Animais
11.
Curr Microbiol ; 80(8): 255, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37356021

RESUMO

Unlike environmental P. koreensis isolated from soil, which has been studied extensively for its role in promoting plant growth, pathogenic P. koreensis isolated from fish has been rarely reported. Therefore, we investigated and isolated the possible pathogen that is responsible for the diseased state of Tor tambroides. Herein, we reported the morphological and biochemical characteristics, as well as whole-genome sequences of a newly identified P. koreensis strain. We assembled a high-quality draft genome of P. koreensis CM-01 with a contig N50 value of 233,601 bp and 99.5% BUSCO completeness. The genome assembly of P. koreensis CM-01 is consists of 6,171,880 bp with a G+C content of 60.5%. Annotation of the genome identified 5538 protein-coding genes, 3 rRNA genes, 54 tRNAs, and no plasmids were found. Besides these, 39 interspersed repeat and 141 tandem repeat sequences, 6 prophages, 51 genomic islands, 94 insertion sequences, 4 clustered regularly interspaced short palindromic repeats, 5 antibiotic-resistant genes, and 150 virulence genes were also predicted in the P. koreensis CM-01 genome. Culture-based approach showed that CM-01 strain exhibited resistance against ampicillin, aztreonam, clindamycin, and cefoxitin with a calculated multiple antibiotic resistance (MAR) index value of 0.4. In addition, the assembled CM-01 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database, Gene Ontology database, and Kyoto Encyclopedia of Genes and Genome pathway database. A comparative analysis of CM-01 with three representative strains of P. koreensis revealed that 92% of orthologous clusters were conserved among these four genomes, and only the CM-01 strain possesses unique elements related to pathogenicity and virulence. This study provides fundamental phenotypic and genomic information for the newly identified P. koreensis strain.


Assuntos
Peixes , Pseudomonas , Sequenciamento Completo do Genoma , Animais , Resistência Microbiana a Medicamentos/genética , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Malásia , Filogenia , Prófagos/genética , Sequências de Repetição em Tandem/genética , Virulência/genética , Pseudomonas/classificação , Pseudomonas/efeitos dos fármacos , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Genoma Bacteriano , Genótipo , Fenótipo
12.
Artigo em Inglês | MEDLINE | ID: mdl-37146453

RESUMO

The investigation of intestinal microbiota can provide evidence for revealing the growth and development regulation, feeding habits, environmental adaptability and pollutant indication of marine organisms. To data, the intestinal microbiota of marine organisms in the South China Sea is relatively lacking. To supplement these information, we sequenced intestinal microbiota from five fishery resources (including Auxis rochei, A. thazard, Symplectoteuthis oualaniensis, Thunnus albacores, and Coryphaena equiselis) in the South China Sea using high-throughput Illumina sequencing technology. After filtering, a total of 18,706,729 reads were finally produced and then clustered into OTUs. The mean number of OTUs detected in A. rochei, A. thazard, C. equiselis, S. oualaniensis, and T. albacores was 127, 137, 52, 136, and 142, respectively. Although the Actinobacteria, Bacteroidetes, Cyanobacteria, Deferribacteres, Firmicutes, Proteobacteria, Spirochaetes, Tenericutes, [Thermi], and unclassified_Bacteria were the most abundant in the five species, Photobacterium is the most abundant microbiota. Meanwhile, intestinal microbiota showed species- and sampling sites- specificity, thus only 84 microbiota species were common to all species. Additionally, the potential functions of OTUs in the five species is mainly involved in the synthesis and metabolism of carbohydrate, amino acid, fatty acid and vitamin. This study can provide basic data for clarifying the diversity and species- specificity of intestinal microbiota of five species in the South China Sea, and help to improve the intestinal microbiota database of marine organisms.


Assuntos
Microbioma Gastrointestinal , Caça , Oceanos e Mares , Animais , Variação Genética , Peixes/microbiologia , China
13.
J Fish Dis ; 46(8): 813-827, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37171060

RESUMO

In this study, RNAi technology was used to silence the gene rstA in Aeromonas hydrophila. The strain rstA-RNAi displayed significant decrease in intracellular survival compared with that of the wild-type strain B11. Transcriptome analysis explored that the expression of some important anti-stress protein genes was significantly upregulated in rstA-RNAi compared with the wild-type strain, while the expression of the genes related to iron acquisition and type VI secretion system was significantly downregulated. Further study found that under low pH and H2 O2 stress, the anti-stress protein genes were expressed at a low level in rstA-RNAi, the growth ability of rstA-RNAi was also significantly lower than that of wild-type strain. The results also displayed that with the fluctuation of iron concentration, the expression of some genes related to iron acquisition remained at a low level in rstA-RNAi, and the growth ability of rstA-RNAi was lower than that of the wild-type strain under the same culture conditions, indicating rstA can regulate iron acquisition and further affect the bacteria growth. The adhesion ability of rstA-RNAi to fish macrophages was reduced, suggesting rstA may be also affect the formation of type VI secretion system of A. hydrophila.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Sistemas de Secreção Tipo VI , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Aeromonas hydrophila/fisiologia , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Ferro/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária
14.
Pol J Vet Sci ; 26(1): 109-118, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36961281

RESUMO

This experimental study aimed to investigate some hematological and immunological changes as a result of Aeromanas hydrophila infection in Siberian sturgeon (Acipenser baerii Brandt, 1869). Their feeds were supplemented with ß-1,3/1,6 glucan at different ratios, 250 mg/kg (ßG250); 500 mg/kg (ßG500) and 750 mg/kg (ßG750). To create an experimental infection, 4×106 cfu/ml Aeromonas hydrophila inoculum was intraperitoneally injected to fish. 0.1 ml intraperitoneal bacteria injection was given to the fish in 12 of 15 tanks, each consisting of 10 fish (the fish in the control group were not given bacteria). Considering the ßG500 and ßG750 group fish as positive (C+) and negative control (C-) groups in terms of hematological parameters, it was found that RBC (erythrocyte) and Hb (hemoglobin) values, as well as RBC indices (MCV, MCHC, MCH) significantly increased. The immunological parameters, including WBC (leukocyte), leukocyte cell percentages (lymphocyte, monocyte, neutrophil, eosinophil), as well as cytokines, including IL-1ß, IL-6, IL-8, and TNF-α values showed similar increases in the ßG500 and ßG750 groups. It was found that the addition of 500 and 750 mg/kg doses of ß-1,3/1,6 glucan to the feed stimulated non-specific immunity of fish against bacterial agents and/or septicemic diseases and beta glucan at this dosage range was determined to be ideal for fish health and that it may be a herbal immunostimulant that can be an alternative to many medicaments.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila , Glucanos , Suplementos Nutricionais , Peixes/microbiologia , Adjuvantes Imunológicos/farmacologia , Infecções por Bactérias Gram-Negativas/veterinária , Ração Animal/análise , Dieta/veterinária
15.
J Fish Dis ; 46(5): 507-516, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36727551

RESUMO

Mycobacterium marinum is a slow-growing, photochromogenic nontuberculous mycobacterium, which can cause mycobacteriosis in various animals, including humans. Several cases of fish mycobacteriosis have been reported to date. Mycobacterium marinum has also been isolated from aquatic environmental sources such as water, sand, biofilms, and plants in the natural environments. Hence, we hypothesized that a wide variety of sources could be involved in the transmission of M. marinum. In this study, we tested this hypothesis by isolating M. marinum from various sources such as fish, invertebrates, seagrass, periphytons, biofilms, sand, and/or water in two aquaria in Japan and conducting a phylogenetic analysis based on single-nucleotide polymorphisms (SNPs) using whole-genome sequences of the isolated strains. The analysis revealed that the strains from animal and environmental sources belonged to the same clusters. This molecular-based study epidemiologically confirmed that various sources, including fish, invertebrates, and environmental sources, could be involved in transmission of M. marinum in a closed-rearing environment. This is the first report where M. marinum was isolated from different sources, and various transmission routes were confirmed in actual cases, which provided essential information to improve the epidemiology of M. marinum.


Assuntos
Doenças dos Peixes , Infecções por Mycobacterium não Tuberculosas , Mycobacterium marinum , Humanos , Animais , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Polimorfismo de Nucleotídeo Único , Filogenia , Areia , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Água
16.
J Fish Dis ; 46(4): 381-394, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36606554

RESUMO

Chronic disease following Nocardia seriolae infection in a wide range of aquatic animals has been reported in many Asian countries and recently in America and Mexico. This study aimed to investigate the epidemiological relationship among N. seriolae isolates in Taiwan by investigating their genotype and enzymatic activities. A total of 66 strains isolated from 14 known and four unknown host fish from five sites in Taiwan were characterized using five combined methods. High genotypic diversity was recognized among the isolates with 10 pulsotypes being identified from the pulsed-field gel electrophoresis method and 21 reptypes from the repetitive extragenic palindromic amplification method; however, no natural plasmids were detected in this bacterial population. Pulsotypes A8 and RI analysed by PFGE and repPCR, respectively, were found to be predominant within five sites in Taiwan over 17 years of isolation. Enzymatically, the majority of isolates displayed high leucine arylamidase, ß-glucosidase and α-glucosidase activities but were negative for lipase, α-galactosidase, ß-glucuronidase, N-acetyl-glucosaminidase, α-mannosidase and α-fucosidase activities. We identified a strong association between genotype and enzymatic activity since the majority of pulsotypes displayed the same type of enzymatic profile. This study provides comprehensive and potential epidemiological data, which will aid the fish farming activities and prevention method development.


Assuntos
Doenças dos Peixes , Nocardiose , Nocardia , Animais , Taiwan/epidemiologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Nocardia/genética , Nocardiose/epidemiologia , Nocardiose/veterinária , Nocardiose/microbiologia , Genótipo , Peixes/microbiologia
17.
J Microbiol Biotechnol ; 33(3): 371-377, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36597589

RESUMO

In this study, a pepA gene encoding glutamyl (aspartyl)-specific aminopeptidase (PepA; E.C. 3.4.11.7) was cloned from Tetragenococcus halophilus CY54. The translated PepA from T. halophilus CY54 showed very low similarities with PepAs from Lactobacillus and Lactococcus genera. The pepA from T. halophilus CY54 was overexpressed in E. coli BL21(DE3) using pET26b(+). The recombinant PepA was purified by using an Ni- NTA column. The size of the recombinant PepA was 39.13 kDa as determined by SDS-PAGE, while its optimum pH and temperature were pH 5.0 and 60°C, respectively. In addition, the PepA was completely inactivated by 1 mM EDTA, indicating its metallopeptidase nature. The Km and Vmax of the PepA were 0.98 ± 0.006 mM and 0.1 ± 0.002 mM/min, respectively, when Glu-pNA was used as the substrate. This is the first report on PepA from Tetragenococcus species.


Assuntos
Enterococcaceae , Alimentos Fermentados , Peixes , Glutamil Aminopeptidase , Glutamil Aminopeptidase/genética , Glutamil Aminopeptidase/isolamento & purificação , Glutamil Aminopeptidase/metabolismo , Alimentos Fermentados/microbiologia , Peixes/microbiologia , Enterococcaceae/enzimologia , Enterococcaceae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Animais
18.
Chemosphere ; 316: 137849, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642133

RESUMO

Aquaponics combines the advantages of aquaculture and hydroponics as it suits the urban environment where a lack of agricultural land and water resources is observed. It is an ecologically sound system that completely reuses its system waste as plant fertilizer. It offers sustainable water savings, making it a supreme technology for food production. The two major processes that hold the system together are nitrification and denitrification. The remains of fish in form of ammonia reach the bio filters where it is converted into nitrite and further into nitrate in presence of nitrifying and denitrifying bacteria. Nitrate eventually is taken up by the plants. However, even after the uptake from the flow stream, the effluent contains remaining ammonium and nitrates, which cannot be directly released into the environment. In this review it is suggested how integrating the biofilm-based bioreactors in addition to aquaculture and hydroponics eliminates the possibility of remains of total ammonia nitrogen [TAN] contents, leading to bioremediation of effluent water from the system. Effluent water after releasing from a bioreactor can be reused in an aquaculture system, conditions provided in these bioreactors promote the growth of required bacteria and encourages the mutual development of plants and fishes and eventually leading to bioremediation of wastewater from aquaponics.


Assuntos
Nitrificação , Águas Residuárias , Animais , Amônia , Nitratos , Desnitrificação , Biodegradação Ambiental , Bactérias , Nitrogênio/análise , Peixes/microbiologia , Reatores Biológicos/microbiologia , Biofilmes , Água
19.
Microb Ecol ; 85(2): 372-382, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35275230

RESUMO

Fish-associated microorganisms are known to be affected by the environment and other external factors, such as microbial transfer between interacting partners. One of the most iconic mutualistic interactions on coral reefs is the cleaning interactions between cleaner fishes and their clients, during which direct physical contact occurs. Here, we characterized the skin bacteria of the Caribbean cleaner sharknose goby, Elacatinus evelynae, in four coral reefs of the US Virgin Islands using sequencing of the V4 region of the 16S rRNA gene. We specifically tested the relationship between gobies' level of interaction with clients and skin microbiota diversity and composition. Our results showed differences in microbial alpha- and beta-diversity in the skin of gobies from different reef habitats and high inter-individual variation in microbiota diversity and structure. Overall, the results showed that fish-to-fish direct contact and specifically, access to a diverse clientele, influences the bacterial diversity and structure of cleaner gobies' skin. Because of their frequent contact with clients, and therefore, high potential for microbial exchange, cleaner fish may serve as models in future studies aiming to understand the role of social microbial transfer in reef fish communities.


Assuntos
Microbiota , Perciformes , Animais , RNA Ribossômico 16S , Peixes/microbiologia , Recifes de Corais , Região do Caribe , Bactérias
20.
Microb Ecol ; 85(4): 1190-1201, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35366074

RESUMO

Host-microbiota interactions play critical roles in host development, immunity, metabolism, and behavior. However, information regarding host-microbiota interactions is limited in fishes due to their complex living environment. In the present study, an allodiploid hybrid fish derived from herbivorous Megalobrama amblycephala (♀) × carnivorous Culter alburnus (♂) was used to investigate the successional changes of the microbial communities and host-microbiota interactions during herbivorous and carnivorous dietary adaptations. The growth level was not significantly different in any developmental stage between the two diet groups of fish. The diversity and composition of the dominant microbial communities showed similar successional patterns in the early developmental stages, but significantly changed during the two dietary adaptations. A large number of bacterial communities coexisted in all developmental stages, whereas the abundance of some genera associated with metabolism, including Acinetobacter, Gemmobacter, Microbacterium, Vibrio, and Aeromonas, was higher in either diet groups of fish. Moreover, the abundance of phylum Firmicutes, Actinobacteria, and Chloroflexi was positively correlated with the host growth level. In addition, Spearman's correlation analysis revealed that the differentially expressed homologous genes in the intestine associated with cell growth, immunity, and metabolism were related to the dominant gut microbiota. Our results present evidence that host genetics-gut microbiota interactions contribute to dietary adaptation in hybrid fish, which also provides basic data for understanding the diversity of dietary adaptations and evolution in fish.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Peixes/microbiologia , Dieta/veterinária , Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...